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Accurate Methods for Large Molecular Systems†
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Laboratory, AFRL/RZS, 10 East Saturn BouleVard, Edward AFB, California 93524

ReceiVed: December 31, 2008; ReVised Manuscript ReceiVed: February 7, 2009

Three exciting new methods that address the accurate prediction of processes and properties of large molecular
systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO)
method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments)
in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical
level of theory while greatly reducing the demands on computational time and resources. Each of these methods
is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer
hardware while retaining the accuracy of the corresponding electronic structure method from which it is
derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of
nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the
computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic
structure method. The performance of the methods is demonstrated using applications to several systems,
including benzene dimer, small organic species, pieces of the R helix, water, and ionic liquids.

1. Introduction

The development of quantum chemistry methods in the 1980s
and 1990s primarily focused on performing accurate calculations
on relatively small molecular systems. The desire for accurate
calculations on larger molecular species led to several formula-
tions employing more efficient scaling, as well as additivity of
basis set improvement and higher levels of electron correlation.
With regard to the latter, the Gaussian G(n)1 methods and the
Weizmann W(n)2 methods are well-known, along with several
variants.3 Because they ultimately rely on the use of very
accurate electronic structure methods that scale on the order of
n7, where n measures the size of the system of interest, these
approaches are limited to fairly small molecular species, with
less than 10 heavy (non-hydrogen) atoms.

Simultaneous progress in the development of systematically
improving atomic basis sets has also provided a path toward
systematic increases in accuracy. It was recognized4 that basis
functions optimized for atomic correlation are also capable of
describing molecular correlation effects. Dunning and co-
workers, for example, introduced a series of correlation-
consistent basis sets5 based upon these conclusions, capable of

accurately treating electron correlation with a compact set of
primitive Gaussian functions. These basis sets can be used in a
systematic way to obtain results approaching the complete basis
set (CBS) limit. However, increasingly large basis sets must be
used, and the convergence tends to be slow. Werner has recently
introduced a series of F12 basis sets6 with improved convergence
to the CBS limit. The high accuracy of these basis sets still
comes at a significant computational cost, only feasible on
relatively small systems.

Chemical phenomena occur in condensed phases as well as
in the gas phase, and many methods have been developed to
treat the chemical environment7 and condensed-phase phenom-
ena.8 The desire to study ever larger systems led to combining
quantum mechanics (QM) with molecular mechanics (MM).
Several such combinations, known as QM/MM methods,9 have
been developed since the initial work of Warshel,9a including
multilayer methods such as ONIOM,10 the Truhlar MCMM
methods,11 and the effective fragment potential method (EFP)12-27

developed by Gordon and co-workers. The EFP method will
be discussed in detail as a means to investigate nonbonded and
intermolecular interactions via the automatic generation of a
model potential that is derived from first principles.

While hybrid methods have expanded the size of systems
that are accessible to computations, the use of classical model
potentials for the description of the environment can be a
limiting factor, given that the electron density of the MM region
and its impact on the QM region is not usually properly
accounted for.

Alternative approaches to QM/MM methods are fragmenta-
tion methods, in which the system is broken (“fragmented”)
into smaller pieces, each of which is considered essentially
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independently by a specified level of electronic structure theory.
Fragmentation methods have the advantage that they are nearly
fully quantum mechanical in nature, with classical approxima-
tions often used for long-range interactions. Several general
fragmentation methods have been proposed, including molecular
fragmentation with conjugated caps (MFCC),28 the elongation
method,29 the molecular tailoring approach (MTA),30 the fast
electron correlation method for molecular clusters developed
by Hirata,31 Truhlar’s electrostatically embedded many-body
(EE-MB) expansion,32 multicentered QM/QM methods,33 the
systematic fragmentation method (SFM),34-38 and the fragment
molecular orbital (FMO) method.39-45 The latter two methods,
the SFM and the FMO methods, will be discussed in detail in
this work.

Instead of separating a system into two regions that are
described by two very different levels of theory (QM and MM),
fragmentation methods that divide a system into many smaller

pieces, all of which are described by the same level of QM
theory, have been proposed since the 1970s.46b By approaching
a large system in this way, each smaller fragment can be treated
using high levels of theory, providing the desired accuracy and
an improvement in speed. The earliest attempts46a constructed
a set of fragments from common chemical groups (methyl,
amino, etc.) and used a selection of these fragments to build
larger molecules. More recent fragmentation methods28-45 begin
with the larger molecule of interest and break the system into
smaller fragments.

To increase their generality, fragmentation methods should
also treat the environment (e.g., the remainder of the entire
molecular system, a solvent) around each fragment in some
approximate but realistic manner. When a molecule or a
molecular system is fragmented into smaller pieces, each
fragment no longer electronically “feels” the remainder of the
initial system, unless one devises some way to retain the lost
interactions. This issue is addressed in the FMO method39 by
performing each individual fragment calculation in a Coulomb
“bath” represented by the electrostatic potential (ESP) of the
entire system. Further corrections to the FMO method are
achieved by performing fully quantum mechanical two-fragment
(dimer) and three-fragment (trimer) calculations. In the SFM
method,34 the effects of other fragments are incorporated by
including overlapping fragments in such a manner that the
double counting of atoms is accounted for, and nonbonded
interactions are captured by employing classical potentials.12

Accurately capturing nonbonded effects is essential to maintain-
ing kcal/mol accuracy compared to full ab initio studies. Both
the FMO and SFM methods are discussed in more detail in
following sections. In both methods, fully quantum mechanical
or fully ab initio can refer to any of the common electronic
structure methods that are available in most electronic structure
packages.

Traditional electronic structure methods, such as Hartree-Fock
(HF), second-order perturbation theory (MP2), and coupled
cluster theory (e.g., CCSD(T)), have rapidly increasing resource
requirements (e.g., time, memory, mass storage). For example,
the HF, MP2, and CCSD(T) computer time requirements scale
as O(n4), O(n5), and O(n7), respectively, where n measures the
size of the system, for example, in terms of the basis set size.
Further, CCSD(T) memory requirements scale as O(n4), while
disk requirements are difficult to uniquely define. One approach
to addressing the computational scaling issue is to develop
highly parallel algorithms. The development of parallel algo-
rithms for electronic structure theory has been an active research
area for ∼20 years, and considerable progress has been achieved
for increasingly complex QM methods.47 Such efforts may be
referred to as fine-grained parallelism, in the sense that each
energy or derivative evaluation itself takes advantage of many
cores, usually in a distributed manner.48 In many fragmentation
methods, each fragment calculation can be performed essentially
independently of all of the others. This leads to a multilevel
parallelism since the energy of each fragment can be obtained
on a separate node (coarse-grained parallelism) while the fine-
grained parallelism can be exploited within each node.49 If a
fragmentation method is implemented to take advantage of this
ability, large reductions in required computational resources can
be achieved, facilitating calculations on, for example, condensed
phases, proteins, and surfaces. Fragmentation approaches with
multilevel parallelism also expand the capabilities of modest
(e.g., single group or departmental) computer systems.

The present work focuses on three methods that have been
designed to accurately treat large systems, EFP, SFM, and FMO.

Mark S. Gordon, Distinguished Professor of Chemistry at Iowa State
University and Director of the Ames Laboratory Applied Mathematical
Sciences program, was born and raised in New York City. After completing
his B.S. in Chemistry in 1963, Professor Gordon entered the graduate
program at Carnegie Institute of Technology, where he received his Ph.D.
in 1967 under the guidance of Professor John Pople, 1998 Chemistry Nobel
Laureate. Following a postdoctoral research appointment with Professor
Klaus Ruedenberg at Iowa State University, Professor Gordon accepted a
faculty appointment at North Dakota State University in 1970, where he
rose through the ranks, eventually becoming distinguished professor and
department chair. He moved to Iowa State University and Ames Laboratory
in 1992. Profesor Gordon’s research interests are broadly based in electronic
structure theory and related fields, including solvent effects, the theory of
liquids, surface science, the design of new materials, and chemical reaction
mechanisms. He has authored more than 450 research papers and is a
member (and Treasurer) of the International Academy of Quantum
Molecular Science.

Jonathan Mullin is a graduate student in the field of theoretical chemistry.
After completing B.S. (2004) and M.S. (2005) degrees in biochemistry,
Jonathan entered the Iowa State university chemistry program under the
direction of Professor Mark Gordon. Mr. Mullin’s research interests include
solvation chemistry, biological systems, and QM/MM methods.

Spencer Pruitt received his B.S. in Chemistry from the University of
Minnesota Duluth, in 2006. Afterwards, he entered the graduate program
at Iowa State University, where he is currently working towards his Ph.D.
in the research group of Prof. Mark S. Gordon. His research interests include
the study of intermolecular interactions in liquids, the reactivity of ionic
liquids, and the development of the Fragment Molecular Orbital method
within GAMESS.

Luke Roskop received his B.S. degree in Chemistry from St. Cloud State
University in 2005. His main research interests are developments in MCSCF,
multireference perturbation theory, and surface methods. He is currently a
graduate student working toward his Chemistry Ph.D. at Iowa State
University.

Lyudmila V. Slipchenko is an Assistant Professor in the chemistry
department at Purdue University. She received her B.S. and M.S. in Applied
Mathematics and Physics from Moscow Institute of Physics and Technology
and a Ph.D. in Chemistry from the University of Southern California. As
a postdoctoral research associate, she worked with Prof. Mark S. Gordon
at ISU. Her research is focused on the study of electronic structure, electronic
excited states, and intermolecular interactions in the condensed phase.

Jerry A. Boatz, Principal Research Chemist at the Air Force Research
Laboratory, Edwards AFB, CA, completed B.S. degrees in chemistry and
mathematics and B.A. degrees in physics and computer science in 1983.
He then began graduate program studies at North Dakota State University
under the guidance of Prof. Mark Gordon and received his Ph.D. in 1989.
Following a postdoctoral research appointment with Prof. Jack Simons at
the University of Utah, Dr. Boatz accepted a position at the Air Force
Phillips Laboratory (now AFRL) at Edwards AFB, CA, in 1991. He was
promoted to Senior Research Chemist in 2001 and to his current position
of Principal Research Chemist in 2006. Dr. Boatz’s research activities are
focused on the discovery and characterization of new energetic materials
for advanced rocket and missile propulsion applications using advanced
electronic structure and high-performance computing methods.
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As noted above, the semiclassical EFP method has been
developed to study nonbonded and intermolecular interactions.
Benzene dimer is chosen as a representative example to illustrate
the accuracy and efficiency of the EFP method, although several
such studies have been carried out,50 as have EFP molecular
dynamics simulations.51 Both the SFM and FMO methods have
been designed to extend fully quantum methods to much larger
molecular systems than are commonly accessible by the
development and implementation of judicious approximations.
It will be shown that the EFP approach provides an effective
means to accurately capture nonbonded interactions within the
SFM framework.39 It will be illustrated that the FMO method
can be used to accurately describe a series of water clusters
and ionic liquid systems.

2. Effective Fragment Potential (EFP) Method

The generalized effective fragment potential (EFP2) method12

is a first-principles-based model potential for the evaluation of
intermolecular forces. This is a modification and extension of
the original EFP1 water model13-17 to general systems. There
are five EFP-EFP interaction terms in the EFP2 model
potential, each of which may be thought of as a truncated
expansion. These include coulombic (electrostatic), induction
(polarization), exchange repulsion, dispersion (van der Waals),
and charge transfer.

E ) Ecoul + Eind + Eexrep + Edisp + Ect (1)

In EFP1, the exchange repulsion, Eexrep, and charge transfer,
Ect, components are folded into one term that contains fitted
parameters, and there is no dispersion contribution. EFP1 has
been integrated with HF,13 DFT,14 MCSCF,15 singly excited
configuration interaction (CIS),16 and time-dependent density
functional theory (TDDFT).17 The EFP2-QM interface is still
under development.18

The main focus in this work is the general EFP2 method.
From this point, EFP will imply the EFP2 method. The five
terms in the EFP potential may be grouped into long-range,
(1/R)n distance-dependent, or short-range interactions, which
decay exponentially. The Coulombic, induction, and dispersion
are long-range interactions, whereas the exchange repulsion and
charge transfer are short-range. EFP has been described in detail
in several papers;12-17 therefore, only a brief overview of the
terms will be presented below.

The Coulomb portion of the electrostatic interaction, ECoul,
is obtained using the Stone distributed multipolar analysis.19 This
expansion is truncated at the octopole term. Atom centers and
the bond midpoints are used as expansion points.

Induction (polarization), Eind, arises from the interaction of
an induced dipole on one fragment with the permanent dipole
on another fragment, expressed in terms of the dipole polariz-
ability. Truncating at the first (dipole) term in the polarizability
expansion is viable since the molecular polarizability tensor is
expressed as a tensor sum of localized molecular orbital20 (LMO)
polarizabilities. Therefore, the number of bonds and lone pairs
in the system is equal to the number of polarizability points.
This induction term is iterated to self-consistency; therefore, it
is able to capture some many-body effects.

Because the Coulomb and induction terms discussed above,
as well as the dispersion interaction, are treated primarily by
classical approximations, the shorter-range interactions that
occur when quantum mechanical charge densities begin to
overlap are not correctly captured. Therefore, each term is
multiplied by a damping (screening) expression. The relative
merits of several approaches to damping have recently been

analyzed and discussed extensively.22 Classical Coulombic
interactions become too repulsive at short range and must be
moderated by a screening term, as discussed in several previous
papers.21,22 Conversely, the induction interaction becomes too
attractive in the short-range regime; therefore, a damping term
is needed here as well. The unphysical behavior is avoided by
augmenting the electrostatic multipoles with exponential damp-
ing functions of the form

fdamp ) 1 - exp(-RR) (2)

where parameters R are determined at each multipole expansion
point by fitting the multipole damped potential to reproduce
the Hartree-Fock potential. Damping terms in the electrostatic
energy are derived explicitly from the damped potential and
the charge density. The damping procedure can be extended to
higher-order electrostatic terms, that is, the charge-dipole,
dipole-dipole, etc., interactions, and this is recommended.21

Damping is also applied to the induction and dispersion
energies.21,22 For induction, both exponential damping, as in eq
2, and Gaussian damping are effective, but the Gaussian
damping seems to be more generally applicable and is therefore
recommended.

The exchange repulsion interaction between two fragments
is derived as an expansion in the intermolecular overlap.23 When
this overlap expansion is expressed in terms of frozen LMOs
on each fragment, the expansion can reliably be truncated at
the quadratic term. This term does require each EFP to carry a
basis set. Since the same basis set is used to generate the
multipoles and the molecular polarizability tensor, EFP calcula-
tions are basis-set-dependent. The smallest recommended basis
set is 6-31++G(d,p).52 The dependence of the computational
cost of an EFP calculation on the basis set appears primarily in
the initial generation of the EFP. Therefore, one can employ
much larger basis sets with minimal cost. The tests presented
below on the SFM method use the 6-311++G(3df,2p)53 basis
set. Since the basis set is used only to calculate overlap integrals
for each pair of fragments, the computation is very fast, and
quite large basis sets are realistic.

Dispersion interactions are often expressed by an inverse R
expansion

Edisp ) ∑
n

CnR
-n (3)

where the coefficients Cn may be derived from the (imaginary)
frequency-dependent polarizabilities integrated over the entire
frequency range.24 The first term in the expansion, n ) 6,
corresponds to the induced dipole-induced dipole (van der
Waals) interactions. In the EFP2 method, this term is evaluated
using the time-dependent HF method. In addition, the contribu-
tion of the n ) 8 term is estimated. The C6 coefficients are
derived in terms of interactions between pairs of LMOs, one
each on two interacting molecular species, or EFPs. Because
the dispersion interaction should decrease to zero at short range,
each dispersion term is multiplied by a damping function.
Tang-Toennies damping25 is frequently used to damp disper-
sion. However, a new approach that is based on the overlap
integrals between interacting fragments22 is free of fitted
parameters and appears to be generally applicable. In future EFP
applications,theoverlap-baseddispersiondampingisrecommended.

The charge-transfer interaction is derived using a supermol-
ecule approach, in which the occupied valence molecular orbitals
on one fragment are allowed to interact with the virtual orbitals
on another fragment. This interaction term leads to significant
energy lowering in ab initio calculations on ionic or highly polar

9648 J. Phys. Chem. B, Vol. 113, No. 29, 2009 Gordon et al.

D
ow

nl
oa

de
d 

by
 A

FR
L

 E
D

W
A

R
D

S 
A

FB
, C

A
 o

n 
Se

pt
em

be
r 

23
, 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
pr

il 
15

, 2
00

9 
| d

oi
: 1

0.
10

21
/jp

81
15

19
x



species when incomplete basis sets are employed. An ap-
proximate formula26 for the charge-transfer interaction in the
EFP2 method was derived and implemented using a second-
order perturbative treatment of the intermolecular interactions
for a pair of molecules at the Hartree-Fock level of theory.
This approximate formula is expressed in terms of the canonical
orbitals from a Hartree-Fock calculation of the isolated
molecules and uses a multipolar expansion (through quadru-
poles) of the molecular electrostatic potentials. Orthonormality
is enforced between the virtual orbitals of the other molecule
and all of the orbitals of the considered molecule, so that the
charge transfer is not contaminated with induction. This
approximate formula has been implemented in the EFP method
and gives charge-transfer energies comparable to those obtained
directly from Hartree-Fock calculations.26 The analytic gradi-
ents of the charge-transfer energy were also derived and
implemented, enabling efficient geometry optimization.27

It is useful to consider the relative costs of the five EFP
interaction terms. On the basis of relatively small molecules
and taking the cost of the Coulomb and dispersion terms to be
one unit, the induction interaction would cost approximately
two units, exchange repulsion would cost about five units, and
charge transfer would cost ∼50 units. For larger molecules, the
relative costs of exchange repulsion and charge transfer will
decrease since they will scale linearly in the large molecule limit.
As always in computational chemistry, there is a trade-off
between computational cost and accuracy.

While the EFP model is currently a rigid-body model
potential, analytic gradients for all terms have been derived and
implemented; therefore, full intermolecular geometry optimiza-
tions, Monte Carlo, and molecular dynamics simulations50,51 can
be performed. Because the method involves no empirically fitted
parameters, an EFP for any system can be generated by a
“makefp” run in the GAMESS54 suite of programs. The EF
potential generated by the makefp run includes (i) multipoles
(produced by the Stone distributed multipolar analysis) that are
used in calculations of Coulomb and polarization terms, (ii) static
polarizability tensors centered at LMOs obtained from CPHF
calculations, which are used for calculations of the polarization
energy and gradients, (iii) dynamic polarizability tensors
centered on the LMOs that are generated by TDHF calculations
and used for calculations of dispersion, (iv) the Fock matrix,
basis set, and localized orbitals for the exchange-repulsion term,
and (v) canonical orbitals for the charge-transfer term. This
automatic generation makes possible the use of the EFP method
for treating intermolecular and nonbonded interactions in
fragmentation methods such as the SFM.

2.1. The EFP Method as a Model for Nonbonded Interac-
tions. Benzene dimer is used here to illustrate the accuracy of
EFP-EFP nonbonded interactions, with a focus on the π-π
interactions between two benzene rings. These π-π interactions
are largely driven by dispersion and are therefore difficult to
account for accurately by most ab initio electronic structure
methods. Previous theoretical and experimental studies suggest
that there are two minima on the benzene dimer potential energy
surface,55-62 the perpendicular T-shaped and parallel-slipped
configurations, as shown in Figure 1. A sandwich structure with
two parallel benzene rings, also shown in Figure 1, is a saddle
point that connects two equivalent parallel-slipped structures.
Sherrill and co-workers calculated potential energy curves for
these three structures56,57 using second-order Møller-Plesset
perturbation theory (MP2) and coupled cluster theory with
single, double, and perturbative triple excitations [CCSD(T)].63

A variety of augmented correlation-consistent basis sets8 were

used with both the MP2 and CCSD(T) levels of theory.
Additionally, they employed symmetry-adapted perturbation
theory (SAPT)64 to decompose the benzene π-π interaction
energyintoelectrostatic,dispersion,induction,andexchange-repulsion
components of the total interaction energy. The binding energies,
equilibrium separations, and SAPT energy decomposition results
from their work compare well with similar results obtained using
the EFP method, as illustrated below.21a

For this work, the EFP for benzene was constructed with the
6-311++G(3df,2p) basis set,53 using the MP2/aug-cc-pVTZ64

benzene monomer geometry taken from ref 57. The multipoles
for benzene were generated using a numerical distributed
multipolar analysis (DMA).19 The numerical DMA scheme was
employed due to the instability and basis set dependence of the
standard analytic DMA scheme, as well as the need for diffuse
functions to properly describe the exchange-repulsion interac-
tions within the EFP framework. Higher-order (up to quadru-
poles) damping terms were also used to provide an accurate
description of charge penetration through screening of the
potentials.21

The EFP binding energies and corresponding inter-ring
distances for the three benzene dimer structures are in good
agreement with the analogous ab initio values obtained by
Sherrill and co-workers (see Table 1). Relative to the full
CCSD(T)/aug-cc-pVQZ binding energies, the EFP method
overbinds the sandwich dimer by 0.4 kcal/mol and underbinds
the T-shaped structure by 0.1 kcal/mol, while the equilibrium
intermolecular separations are overestimated by approximately
0.1-0.2 Å. In comparison, MP2 with the same basis set
overestimates the binding energies by 1.7 and 0.9 kcal/mol for
the sandwich and T-shaped dimers, respectively, and underes-
timates the equilibrium distances by approximately 0.1-0.2 Å.
In fact, the MP2 binding energies become successively worse
compared with those predicted by CCSD(T) as the basis set is
improved. The EFP and CCSD(T) predicted binding energies
and structures are in reasonable agreement with each other,
whereas the agreement between MP2 and CCSD(T) is not as
good. Table 1 summarizes the MP2, CCSD(T), and EFP total
interaction energies of all three benzene dimer structures. A
comparison of the total interaction energy decompositions
obtained using both SAPT and the EFP method shows good
agreement for the sandwich and T-shaped isomers (see Figures
2 and 3). Specifically, the error in the EFP method compared
to SAPT for the dispersion, exchange-repulsion, and polariza-
tion interactions is in the range of 0.2-0.5 kcal/mol for these
two isomers.21a

Highly accurate methods involve very demanding scaling of
computational resources, such as time, memory, and disk. For
instance, a single-point energy calculation in the 6-311++G(3df,
2p) basis set (660 basis functions) by MP2 requires 142 min of
CPU time on one IBM Power5 processor, whereas the analogous
EFP calculation requires only 0.4 s. The corresponding

Figure 1. Sandwich, T-shaped, and parallel-displaced configurations
of the benzene dimer.
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CCSD(T) calculation would be much more resource demanding
than MP2. Taking into account the relatively good agreement
of the EFP method results with the CCSD(T)/aug-cc-pVQZ
results described above, this significant reduction in total
computation time comes with a minimal loss of accuracy.

3. The Systematic Fragmentation Method (SFM)

The systematic fragmentation method (SFM) is designed to
permit a large molecular system, such as a protein, a polymer,
or a surface, to be fragmented into smaller pieces in such a
way that retains the accuracy of a full ab initio calculation at
the same level of theory while significantly decreasing the
computational expense. By treating the smaller subsystems with
accurate levels of theory, the total energy and properties of the
full system are obtained through addition and subtraction of
the contributions from the overlapping subsystems or “groups.”
Many-body effects are accounted for, including the nearest

neighbor of each group. Nonbonded interactions between groups
are also accounted for. In the original formulation,34 these
nonbonded interactions were obtained using a classical elec-
trostatic potential. Recently, as illustrated in the following
paragraphs, this nonbonded description has been improved
through the use of the EFP method, providing a more accurate
representation of the nonbonded interactions.38

Within the context of the SFM, a molecule can be thought
of as a collection of functional groups. For example, ethanol
contains three functional groups (CH3, CH2, and OH)
according to the SFM prescription. To fragment the system
into functional groups, single bonds are broken. This process
splits a pair of bonding electrons; each of these electrons is
assigned to one of the two resulting fragments. In order to
avoid the resulting radical species, a hydrogen atom is used
to “cap” the dangling bonds that are created by the
fragmentation. The capping hydrogen points in the direction
of the broken bond at a chemically reasonable distance. By
design, double or triple bonds are not broken, keeping the
relevant atoms as a part of one functional group. For example,
ethanal would contain two functional groups (CH3 and CHO),
keeping the carbon and oxygen atoms of the carbonyl together
in one group. After the addition of the hydrogen caps, the
ethanol groups would be CH4, CH4, and H2O, and the ethanal
groups would be CH4 and CH2O.

To gain a more quantitative understanding of the SFM,
consider the general example of an acyclic molecule M
containing K functional groups Gi:

M ) G1G2G3...Gk (4)

Each group Gi is connected by single bonds to adjacent groups
Gi-1 and Gi+1. In order to separate the functional groups of M
into smaller fragments, one can imagine breaking the Gi-1-Gi

single bond and then capping each new terminal atom with a
hydrogen atom. This produces two new, smaller species

M1 ) G1G2G3...Gi-1Hi-1 (5)

M2 ) HiGiGi+1...Gk (6)

The internal geometries of M1 and M2 are preserved, except
for the hydrogen atoms that have been used to cap the missing
bond vector. The total energy can then be written, without
approximation, as

E(M) ) E(M1) + E(M2) + dE1 (7)

where dE1 is the correction for the differential change in the
energy caused by breaking a bond and adding two hydrogen
caps. This process can be repeated since bonds can be broken
at any point along the chain, decomposing the full system into
many smaller fragments. As the separation between the bond
breaks is increased, the accuracy of the SFM will increase since
the larger fragments will give a more accurate description of

TABLE 1: Binding Energies (kcal/mol) and Equilibrium Separations R (Å) of Benzene Dimer Structures

sandwich T-shaped parallel-displaced

method basis set R energy R energy R1 R2 energy

MP2a aug-cc-pVDZb 3.8 -2.83 5.0 -3.00 3.4 1.6 -4.12
aug-cc-pVTZb 3.7 -3.25 4.9 -3.44 3.4 1.6 -4.65
aug-cc-pVQZb 3.7 -3.35 4.9 -3.48 3.4 1.6 -4.73

CCSD(T)a aug-cc-pVDZb 4.0 -1.33 5.1 -2.24 3.6 1.8 -2.22
aug-cc-pVQZb 3.9 -1.70 5.0 -2.61 3.6 1.6 -2.63

EFP 6-311++G(3df,2p) 4.0 -2.11 5.2 -2.50 3.8 1.2 -2.34

a Reference 56. b Basis sets as described in ref 56.

Figure 2. Comparison of SAPT and EFP interaction energy (kcal/
mol) decomposition as a function of the separation (Å) of benzene
dimers in the sandwhich configuration.

Figure 3. Comparison of SAPT and EFP interaction energy (kcal/
mol) decomposition as a function of the separation R (Å) of benzene
dimers in the T-shaped configuration.
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the full system. The separation between broken bonds can be
described as different “levels” of the SFM.

The SFM levels are defined as follows.34 Consider the
molecule M

M ) G1G2G3G4G5G6G7G8 (8)

In the level 1 SFM, two bonds separated by just one functional
group are sequentially broken. The fragments initially created
would, for example, be as follows

M ≈ G1G2 + G2G3G4G5G6G7G8 - G2 (9)

The G2 fragment is subtracted off to conserve the number of
atoms. Subsequently, this process is repeated exhaustively on
the G2G3G4G5G6G7G8 fragment until no fragment larger than
two functional groups remains. In the end, the energy of M can
be approximately decomposed into the simple sum of fragment
energies for level 1 as follows

E level 1
bonded(M) ) E(G1G2) + E(G2G3) + E(G3G4) +

E(G4G5) + E(G5G6) + E(G6G7) + E(G7G8) - E(G2) -
E(G3) - E(G4) - E(G5) - E(G6) - E(G7) (10)

Similarly, in the level 2 SFM, bonds separated by two functional
groups are sequentially broken with the energy of M being
decomposed into the following expression

E level 2
bonded(M) ) E(G1G2G3) + E(G2G3G4) + E(G3G4G5) +
E(G4G5G6) + E(G5G6G7) + E(G6G7G8) - E(G2G3) -

E(G3G4) - E(G4G5) - E(G5G6) - E(G6G7) (11)

In the level 3 SFM, bonds separated by three functional groups
are sequentially broken with the energy of M being decomposed
into the following expression

E level 3
bonded(M) ) E(G1G2G3G4) + E(G2G3G4G5) +

E(G3G4G5G6) + E(G4G5G6G7) + E(G5G6G7G8) -
E(G2G3G4) - E(G3G4G5) - E(G4G5G6) - E(G5G6G7)

(12)

It is important to note that in the limit of SFM, that is, for level
n, where n is the number of groups in the system, one would
be left with the unfragmented system. Therefore, the higher the
SFM level employed, the larger the fragments, and the closer
one should get to the energy of the exact unfragmented system.

There are some limitations of the SFM. First, as noted earlier,
the SFM is unable to fragment conjugation in delocalized
molecular systems. The second, less obvious, limitation is that
the SFM is unable to fragment six-member rings using level 3
since the capping hydrogens would approach each other too
closely and would therefore cause unphysical repulsive interac-
tions. To avoid this, the ring must remain intact and is considered
to be a functional group itself. Similarly, five-member rings can
only be fragmented at level 1; four- and three-member rings
cannot be fragmented at all. These exceptions are referred to
as the ring repair rule.

3.1. Nonbonded Interactions. The simplest approach to
obtain the energy of the system of interest would be to calculate
the energies of the individual hydrogen-capped fragments and
sum them accordingly. The result obtained from this procedure
would differ greatly from the analogous calculation on the full
molecular system. This is because the (nonbonded) interactions
among the separated fragments are unaccounted for. These
nonbonded interactions are naturally incorporated into the full
ab initio calculation. The nonbonded interactions are modeled

within the SFM framework by using a modified many-body
expansion;37 this expansion relies on the assumption that bonded
interactions are much stronger than nonbonded ones.

3.2. Two-Body Interactions. The interaction energy between
two functional groups G1 and G2 is given by

Enb
(1,1)[G1;G2] ) E(G1G2) - E(G1) - E(G2) (13)

where E(G1G2) is the supermolecular energy of the two
separated functional groups (placed in their positions in the
original full molecule M) and E(G1),E(G2) are the corresponding
(one-body) fragment energies. The total two-body nonbonded
energy of the system contains the energies of all possible pairs
of functional groups that are not described by the fragmentation
of the bonded system in the definition of M, that is, all pairs of
groups G1,G2 that are not contained in any one fragment.

3.3. Three-Body Interactions. The mutual interaction of
three functional groups G1, G2, and G3 is assumed to be
negligible unless any two of the groups are bonded to each other.
For example, if G3 is bonded directly to G2, then the three-
body interaction energy would be

E nb
(1,2)[G1;G2, G3] ) E(G1G2G3) - E(G1) - E(G2G3) -

Enb
(1,1)[G1;G2] - Enb

(1,1)[G1;G3] (14)

In other words, the three-body energy is simply the supermo-
lecular energy, E(G1G2G3), minus the one-body energies
E(G1),E(G2G3) and minus the two-body energies,
Enb

(1,1)[G1;G2],Enb
(1,1)[G1;G3]. The total three-body energy consists

of all combinations containing any group (G1) with any two
bonded functional groups (G2 or G3), so long as G1 is itself not
present in any bonded fragment with G2 or G3. This general
trend can be extended to four-body interactions and beyond;
however, for the purposes of this work, only three-body terms
will be treated. Note that to employ the SFM method, one only
needs to specify the desired level. The fragmentation then
follows without further specification.

The total SFM energy of a system is simply the addition of
the bonded and nonbonded energies

ESFM
total ) Ebonded + Enonbonded (15)

where Enonbonded includes all terms up to nth order from the
modified many-body approximation. For example, calculations
employing third-order many-body nonbonded energies would
include the second-order many-body nonbonded energies as
well.

3.4. SFM and EFP. SFM molecular energy calculations
corresponding to bonded level 3 including many-body non-
bonded interactions apparently provide, on average, the best
balance between accuracy and computational effort.35 Although
the nonbonded approximation is important for reliability, it also
hinders computational performance by significantly increasing
the number of ab initio terms. For example, moderately sized
proteins (∼3500 residues) have on the order of 106 nonbonded
interactions. Because there are so many nonbonded terms, these
terms can dominate the calculation. It is therefore advantageous
to employ approximate methods for those nonbonded interac-
tions that are sufficiently distant that classical approximations
might be valid. The simplest approach, using just electrostatic
interactions, were used in the original SFM implementation.35

A more sophisticated approach, using effective fragment
potentials (EFP), is described here.38 Compared to electrostatics,
intermediate-range (2.7-4.5Å) EFP interaction energies agree
better with ab initio methods. This increases the number of
nonbonded terms that can be calculated with model potentials.
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The determination of whether a nonbonded term is treated
with EFP or ab initio methods is based on a user-defined cutoff
related to the nearest atom-atom distance between fragments.
The short-range (<2.7 Å) nonbonded terms use ab initio
methods, while long-range (g2.7 Å) ones use EFP. The original
electrostatic approach38 used a cutoff of 4.5 Å. This shortened
EFP cutoff comparatively reduces the number of ab initio
nonbonded terms, thereby decreasing the computational expense.

Previously, Collins and Deev tested the SFM by calculating
the isomerization energies of a set of organic molecules (12-44
heavy atoms) obtained from the Cambridge Structural Data-
base.65 A subset of this set of isomerization energies is examined
here. The energies that are obtained by employing the EFP/ab
initio nonbonded approach are compared with both the fully ab
initio energies (no SFM) and the SFM in which all nonbonded
terms are calculated with the same ab initio method that is used
for the bonded terms. The ab initio calculations here employ
both the Hartree-Fock (HF) and second-order perturbation
theory (MP2) levels with the 6-31G(d,p) basis set. Additional
SFM tests are presented for a small set of alpha helices using
the 6-31++G(d,p) basis set. The larger 6-311++G(3df,2p) basis
set is employed for creating all EFPs used for nonbonded
interactions since this basis set has been shown to produce
reliable results and since the EFP basis set dependence does
not significantly affect the computational cost relative to ab initio
calculations. All of the SFM calculations presented here
correspond to bonding level 3, including up to third-order many-
body nonbonded interactions. All calculations are performed
with the GAMESS54 electronic structure code.

Given in Table 2 are the errors in the isomerization energies.
The corresponding structures are depicted in Scheme 1. It is
evident that the two methods for treating the SFM nonbonded
energy (EFP/ab initio and ab initio only) are in reasonable
agreement with the fully ab initio (non-SFM) energies, as the
mean absolute error (MAE) in all cases is no more than 2.5
kcal/mol. Addition of the third-order nonbonded terms does not
result in any improvement to the MAE. Interestingly, the MAEs
for the combined EFP/ab initio approach for the nonbonded
terms are slightly smaller (∼0.1-0.5 kcal/mol) than those
obtained when the nonbonded terms are evaluated with the ab
initio method (HF or MP2). For the 21 molecules of interest
here, as also noted by Collins and Deev,35 no improvement in
the net CPU time is observed since the molecules themselves

are small. Improvements in CPU timings are observed for larger
molecular systems (>100 atoms), as discussed below.

SFM isomer energies for the larger model R-helices (ranging
from 125 to 170 atoms) are shown in Table 3, with the
corresponding structures presented in Scheme 2. For these
systems, adding the higher-order nonbonded terms does improve
the SFM performance. The MAE improves by ∼1 kcal/mol
when the third-order nonbonded terms are included. Here again,
the SFM errors obtained when using the EFP/ab initio non-
bonded energies are similar (∼1 kcal/mol smaller) to those
obtained using only ab initio nonbonded terms. Table 4
compares the CPU times for using the EFP method for
nonbonded terms with those required for the ab-initio-only SFM.
The time needed to generate the EFP terms is also listed. This
time becomes significant when the third-order many body terms
are included. Further, since the EFP generation requires only
calculations at the Hartree-Fock level of theory, the contribution
of the EFP generation to the overall computation time will
greatly decrease in importance when more accurate electronic
structure methods are used.

Nonetheless, as shown in Table 4, employing EFP to treat a
portion of the SFM third-order nonbonded terms results in an
overall decrease in CPU time by roughly a factor of two. Including
only the second-order nonbonded EFP/ab initio terms gives energies
in good agreement with the full unfragmented energies (Table 3;
MAE ) 2.6 kcal/mol), but the gain in computational efficiency is
small, ∼5-15% less CPU time. The advantage of using the EFP/
ab initio approach is clearly seen in Table 5, where the number of
nonbonded terms that must be computed ab initio is compared for
that for the EFP/ab initio and the electrostatic/ab initio methods.
Since the EFP method is more effective at capturing interaction
energies than electrostatics at close range, the EFP nonbonded
cutoff can be set to the shorter distance of 2.7 Å, instead of 4.5 Å.
This shorter cutoff value reduces the number of expensive ab initio
nonbonded terms by up to 85-90% while still retaining good
accuracy. This increase in efficiency will be especially important
when high levels of theory, such as MP2 or coupled cluster
methods, are employed to treat large molecular systems. A major
advantage of the SFM (and other fragment-like methods) is that it
enables very accurate calculations on large molecular systems that
would otherwise be impossible. As noted above, since the EFP
generation requires only Hartree-Fock-level calculations, the
contribution of the EFP generation to the overall computation time

TABLE 2: Mean Absolute Errors of Isomerization Energies (kcal/mol) Calculated by SFM, Relative to Fully Ab Initio (no
SFM) Energiesa

second-order many-body 6-31G(d,p) third-order many-body 6-31G(d,p)

isomer HF kcal/mol MP2 kcal/mol HF kcal/mol MP2 kcal/mol

ODETAS-AHALUQ 0.0 (0.5) 0.6 (0.1) 0.6 (0.2) 0.4 (0.3)
ODETAS01-AHALUQ 0.5 (1.2) 0.0 (0.7) 0.9 (0.4) 0.0 (0.1)
BAZGEP-BAZGIT 0.4 (0.6) 0.4 (0.2) 0.2 (0.5) 0.3 (0.3)
BELDIF-NOTGAE 2.6 (2.6) 4.6 (5.1) 2.6 (2.4) 4.6 (4.9)
FDOURD01-BOFWIC 0.5 (0.7) 0.2 (0.9) 0.1 (0.2) 0.5 (1.6)
CONBAI-FDMUPD10 0.7 (0.3) 1.1 (2.4) 3.5 (4.2) 2.9 (5.4)
IDUFES-IDUFAO 1.6 (2.1) 3.1 (5.3) 0.7 (0.2) 1.8 (1.1)
LEDRAN-LEDRER 1.0 (0.8) 1.0 (2.6) 1.7 (1.9) 1.6 (2.8)
LEDRIV-LEDRER 1.9 (1.5) 0.3 (0.0) 0.5 (0.4) 1.4 (1.0)
TAXYIA-MOGQOO 1.3 (0.4) 11.1 (8.4) 0.0 (1.2) 9.7 (6.8)
TAXYOG-MOGQOO 1.6 (2.1) 1.1 (3.7) 2.0 (2.6) 1.5 (4.2)
WINXIA-XEXXIH 0.3 (0.3) 0.1 (0.1) 0.3 (0.3) 0.1 (0.1)

MAE 1.0 (1.1) 2.0 (2.5) 1.1 (1.2) 2.1 (2.4)

a The nonbonded terms use the combined EFP/ab initio approximation (cutoff g 2.7 Å). Given in parentheses is SFM with the nonbonded
term fully ab initio (no approximation).
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will greatly decrease in importance when more accurate electronic
structure methods are used.

4. The Fragment Molecular Orbital (FMO) Method

The FMO method39-45 relies upon the assumption that electron
exchange and charge transfer are largely local phenomena in
chemical systems. By breaking a system into fragments and treating
the long-range interactions in a system using only a Coulomb
operator, there are significant reductions in computational expense.
In addition to this initial reduction in computational cost, the FMO
method is further enhanced with the generalized distributed data
interface (GDDI).49 The GDDI uses a two-level parallelization
scheme, assigning individual fragment calculations to different
groups, each group performing its fragment calculation in parallel.
The FMO method has also been interfaced with the polarizable
continuum model (PCM)66 and the effective fragment potential
(EFP)84 for the inclusion of solvent effects. There is also a
multilayer FMO (MFMO) implementation67 that allows for the use

SCHEME 1: Depiction of Isomers Used in Table 2a

a Structures are from the Cambridge Structural Database (CSD). Non-hydrogen atoms have been labeled.

TABLE 3: Absolute Errors in Isomerization Energies
(kcal/mol) at HF/6-31++G(d,p) for Alpha Helixes, Relative
to Fully Ab Initio (no SFM)a

second order
HF/6-31++G(d,p)

third order
HF/6-31++G(d,p)

isomer HF kcal/mol HF kcal/mol

MAQWUW_1-MAQWUW_2 2.7 (1.1) 1.7 (0.2)
WUYCUO-WUYDAV 5.7 (5.8) 3.9 (6.1)
WUYCUO-WUYDEX 0.9 (2.5) 0.1 (3.1)
YETPES_1-YETPES_2 1.1 (5.3) 0.2 (1.0)

MAE 2.6 (3.7) 1.5 (2.6)

a The nonbonded terms use the combined EFP/ab initio
approximation (cutoff g 2.7 Å) or ab initio (given in parentheses).
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of different wave function types for different fragments. The
combination of the long-range approximations to the system and
the GDDI parallelization helps to facilitate the treatment of large
molecular systems.45,68

Creating fragments in the FMO method involves breaking bonds
electrostatically, assigning two electrons of a covalent bond to one

fragment and none to the other, with the fragment choice relying
on the chemical intuition of the user. To avoid the charged species
created by such a fragmentation scheme, a proton from the electron-
deficient fragment is reassigned to the electron-rich species, creating
two neutral fragments (indicated by the “1” and “5” in Figure 4).
The “1” and “5” in the figure both carry sp3 hybrid orbitals to

SCHEME 2: Depiction of r-Helix Isomers Used in Table 4a

a Structures are from the Cambridge Structural Database (CSD). Non-hydrogen atoms have been labeled.
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maintain the carbon character. The individual fragment (monomer)
calculations are performed in the presence of a Coulomb “bath”
that represents the electrostatic potential (ESP) of the system (Figure
5). As described below, the Coulomb bath is treated by a variety
of approximate methods that depend on the distance that separates
monomers, dimers, trimers, etc. Significant improvements69,70 to
this description of the FMO method are obtained by including
many-body effects. Two-body effects are incorporated by explicitly
including all pairs of fragments (monomers). These pairs are called
dimers, and the FMO method that includes them is called FMO2.
Likewise, three-body effects are embodied in the FMO3 version
of the method, in which all trimers are explicitly included. In FMO2
(FMO3), all dimers (trimers) are treated with the chosen level of
electronic structure theory.

To calculate the energy of a system within the FMO method,
first the initial electron density distribution is calculated for each
monomer in the Coulomb bath of the system. The monomer
Fock operators are constructed, and the energy of each monomer
is calculated. Each of the monomer energies is iterated to self-
consistency in this manner, leading to the convergence of the
ESP.

The total energy of a chemical system, within the FMO
approximation, can be written as

E ) ∑
I

N

EI + ∑
I > J

N

(EIJ - EI - EJ) + ∑
I > J > K

N

{(EIJK - EI -

EJ - EK) - (EIJ - EI - EJ) - (EIK - EJ - EK) -
(EKI - EK - EI)} + ... (16)

where monomer (I), dimer (IJ), and trimer (IJK) energies are
obtained using the standard SCF method. Despite the seeming
simplicity of eq 16, the FMO method encapsulates the deeper
ideas of properly handing many-body effects, as clarified in the
diagrammatic treatment69 and the Green’s function formalism.73

This is a very important distinction between the FMO and other
methods. The Fock equation

F̃xCx ) SxCxε̃x x ) I, IJ, IJK (17)

F̃x ) H̃x + Gx (18)

is modified from the standard form with the addition of a term,
V µν

x , that represents the ESP to the one-electron Hamiltonian H̃ x

H̃ µν
x ) H µν

x + V µν
x + B ∑

i

〈µ|�i
h〉〈�i

h|ν〉 (19)

The modified Hamiltonian also contains the projection operator,
B∑i〈µ|�i

h〉〈�i
h|ν〉, needed for division of basis functions along

the fractioned bonds, where B is a constant chosen to be
sufficiently large to remove the corresponding orbitals out of
variational space (normally B ) 106 au).

The ESP of the system takes the form

V µν
x ) ∑

K(*x)

(u µν
K + V µν

K ) (20)

u µν
K ) ∑

A∈K

〈µ|(-ZA/ |r - rA|)|ν〉 (21)

V µν
K ) ∑

λσ∈K

D λσ
K (µν|λσ) (22)

where the first term uµν
K is the nuclear attraction contribution

and the second term Vµν
K is the two-electron contribution, both

of which are calculated for each of the surrounding monomers
K with electron density DK.

TABLE 4: Net CPU Times (minutes) for the SFM HF/6-31++G(d,p) on a Single Core of a Xeon 2.66 GHz Quad Core
Cloverton Node, With 16 GB RAMa

second-order nonbonded third-order nonbonded

isomer # nonbonded terms EFP no EFP # nonbonded terms EFP no EFP

MAQWUW_1 1113 128 (25) 144 3159 329 (191) 559
MAQWUW_2 1113 128 (26) 140 3155 333 (194) 562
WUYCUO 1752 155 (33) 182 5049 413 (214) 853
WUYDAV 1754 162 (33) 188 5059 439 (227) 909
WUYDEX 1754 150 (32) 180 5052 419 (217) 880
YETPES_1 932 115 (24) 122 2623 305 (170) 490
YETPES_2 929 117 (25) 126 2618 299 (166) 497

a Net times include the time needed for EFP generation. The EFP generation time is given in parentheses. The total number of nonbonded
terms is also listed. The heading EFP indicates the use of EFP for the nonbonded terms.

TABLE 5: Comparison of the Number of Ab Initio
Nonbonded Terms Needed for Nonbonded EFP/Ab Initio
Cutoffs Set to 2.7 and 4.5 Å at the Second- And
Third-Order Many-Body Approximation

second-order
many-body

third-order
many body

2.7 Å
(terms)

4.5 Å
(terms)

2.7 Å
(terms)

4.5 Å
(terms)

MAQWUW_1 34 233 113 729
MAQWUW_2 34 224 106 693
WUYCUO 35 318 108 1054
WUYDAV 40 327 130 1075
WUYDEX 36 321 118 1055
YETPES_1 29 225 79 709
YETPES_2 25 225 70 708

Figure 4. Electrostatic fractioning of bonds.
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4.1. FMO Approximations. The formulation of the energy
described above has limitations,44,70 such as the increasing cost
of the two-electron term in the ESP. To reduce this cost, different
approximations can be used to treat the ESP by creating a cutoff
value Rapp. Outside of this cutoff, the two-electron terms of the
ESP can be treated in a more approximate way. However, the
foregoing energy formulation loses some accuracy with such
approximations because the balance among the approximations
in different FMO terms may be lost. For example, if there are
three monomers I, J, and L with some distance-based ap-
proximation (Rapp) applied and the relative distances are as
illustrated in Figure 6, then the electrostatic interaction of
monomers I and L would be treated using the approximation,
while the interaction of monomers J and L would be treated
with the full ESP. However, there would be an interaction of
dimer IJ with monomer L without any approximations (because
L is close to IJ and J but far from I). This causes a loss of
balance among some of the dimer energy terms in the expression

∑
I>J

N

(EIJ - EI - EJ) (23)

for those dimers IJ in which some ESP contributions (i.e., those
for fragment L) included in EI are treated using the approxima-
tion, but in others, they are not. There can be a great many
dimer contributions to the energy in a single calculation, causing
significant loss of accuracy in the energy of the full system.

The issue described above requires a reformulation of the
energy that is equivalent to eq 16, but it must be more accurate
if approximations to the ESP are used.44 For FMO2

Emol )
∑

I

E'I + ∑
I > J

(E'IJ - E'I - E'J)+

∑
I > J

{Tr(DIJVIJ) - Tr(DIVI) - Tr(DJVJ)}

) ∑
I

E'I + ∑
I > J

(E'IJ - E'I - E'J) + ∑
I > J

Tr(∆DIJVIJ)

(24)

A similar expression has been derived for FMO3.78

The new energy terms E′x are defined as the internal energies
of the monomers and dimers with the ESP contributions
subtracted out

E'x ) Ex - Tr(DxVx) x ) I, J, IJ (25)

This is accomplished by contracting Vx with the electron density
Dx. ∆Dx is the difference density matrix, defined as

∆DIJ ) DIJ - DI x DJ ) (dII dIJ

dJI dJJ ) - (dI 0
0 0 ) -

(0 0
0 dJ )(26)

where dII, dIJ, dJI, and dJJ are blocks of DIJ, and dI (dJ) is simply
equal to DI (DJ). This formulation makes it possible to calculate
the total energy explicitly from only the dimer ESP VIJ. By
subtracting the monomer and dimer ESPs in the energy
expression, approximations can be applied to the monomers and
dimers separately. The dimer ESP then directly contributes to
the total energy, while the monomer ESP determines the
monomer electron densities, only contributing to the total energy
indirectly.

Two different levels of approximation are currently used in
the FMO method, enabled by eq 24. For intermediate distances,
the Mulliken approximation71 to the two-electron integrals is
used. Equation 22 can then be rewritten as

Vµν
K = ∑

λ∈K

(DKSK)λλ(µν|λλ) (27)

This approximation reduces the computational cost of the two-
electron integrals by a factor of NB (number of basis functions).

The fractional point charge approximation, using the Mulliken
atomic populations of the monomers, is used for long distances.
The two-electron term of eq 22 is then simplified as

Vµν
K = ∑

A∈K

〈µ|(QA/ |r - rA|)|ν〉 (28)

reducing the computational cost of the two-electron integrals
by another factor of NB.

Interfragment interactions have a similar approximation that
evaluates the electrostatic contribution to the energy using the
monomer densities for far-separated dimers, instead of calculat-
ing the dimer density itself. This contribution is added to the
dimer energy as

E'IJ = E'I + E'J + Tr(DIu1,I(J)) + Tr(DJu1,J(I)) +

∑
µν∈I

∑
Fσ∈J

Dµν
I DFσ

J (µν|Fσ) (29)

where u1,I(J) and u1,J(I) are one-electron Coulomb potentials of
the force exerted by fragment J on fragment I and fragment I
on fragment J, respectively.

Other approximations of the same nature are implemented
for correlated dimers and trimers, where the corresponding
corrections for far-separated pairs and triples of fragments are
neglected.72,74 Formal definitions and descriptions of the trimer
interactions and cutoffs used in FMO3 have been described
previously69,70 and will not be discussed here. All of these
approximations are based on a distance definition Rapp, defined
as the minimum distance between atoms in n-mer I and
monomer J divided by the sum of their van der Waals radii.

There have been several new developments in the FMO
theory that cannot be discussed in detail here. Nonetheless, it
is useful to mention a few of them briefly. As an alternative to
the original bond fragmentation scheme, in which the electron
density describing the detached bonds is variationally optimized,
a new scheme has been suggested in which this density is
obtained for a model system and is kept frozen in fragment

Figure 5. Monomer calculation performed in the ESP of the full system.

Figure 6. Illustration of FMO approximations applied to three
monomers I, J, L (left) and as applied to dimer IJ and monomer L
(right).
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calculations.75 This new scheme has been shown to work well
for covalent crystals such as zeolites. The FMO method has
also recently been implemented for the study of excited states,76

using multiconfigurational self-consistent field (MCSCF) theory,
configuration interaction (CI), and time-dependent density
functional theory (TDDFT).

4.2. FMO2 and FMO3 Calculations on (H2O)32 Clusters.
The unusual characteristics of liquid water make it both very
important to chemical processes and particularly difficult to
model accurately. The structure of small (H2O)n (n ) 6-20)
clusters have recently been determined83 using coupled cluster
theory; however, the ability to model water clusters larger than
this at the same level of theory is nearly impossible. The FMO
method provides a way to model much larger water clusters at
high levels of theory such as CCSD(T) while keeping the
computational cost manageable.

In the present work, calculations of the energies of (H2O)32

water clusters are reported, using fully ab initio Møller-Plesset
second-order perturbation theory (MP2) as well as the MP2
implementation of the FMO method.72,77 For these clusters, a
fragment (monomer) is defined as one water molecule for both
FMO2 and FMO3 calculations. Initial structures were obtained
from EFP Monte Carlo/simulated annealing (MC/SA) simula-
tions followed by EFP optimizations of a representative set of
structures. The MC/SA method with local minimization was
used to sample the configuration space. For each global
minimum found, the number of structures sampled was on the
order of 500 000-1 100 000. The number of steps taken for
each temperature was varied (100, 500, 1000, 10000), along
with changing the number of steps between local minimizations
(10, 100, 1000). The number of fragments moved per step was
also varied between one and five. The starting temperature for
the simulated annealing varied from 500 to 20000 K, and the
final temperature was kept at 300 K. This selection of isomers
(the lowest-energy structure is shown in Figure 7) was used to
investigate the accuracy of the FMO method by comparing both
absolute and relative energies.

Average errors for the FMO2-MP2 calculations (Table 6)
using the 6-31++G(d,p) basis set are very consistent, around

12 kcal/mol. The FMO3-MP2 results illustrate the importance
of three-body interactions in water clusters,78,79 again with very
consistent errors of ∼2-3 kcal/mol (Table 6). Comparing results
between basis sets in Table 6, when the basis set size is increased
to 6-311++G(3df,2p), the FMO2 errors double to ∼24-28
kcal/mol, while the FMO3 errors are cut in half to ∼1 kcal/
mol. This increase in errors with an increased basis set size for
the two-body FMO method could be due to an increased
importance of three-body contributions when the better basis
set is used. The larger basis set also provides a better description
of three-body interactions, making the lack of these interactions
in FMO2 even more detrimental.

Despite the large absolute errors present in the FMO2
description of water clusters, the relative energetics of the
different isomers is captured quite well. On average, the FMO2
relative energies are in agreement with full ab initio results to
within ∼1-2 kcal/mol with both basis sets, shown in Table 7.
The error increases for FMO2 as the relative energy of the
isomers increases, showing an increased importance of three-
body contributions with higher-energy isomers. For both basis
sets, the FMO3 results are within ∼0.5 kcal/mol or less for all
isomers as shown in Table 7, effectively removing the error
from the two-body description used in FMO2.

4.3. The FMO Method Applied to Ionic Liquids. Previous
studies of ionic liquids80-82 have focused on the decomposition
of ion pairs (Figure 8), providing insight into the chemistry of
their ignition as high-energy fuels. The focus of this paper,
however, will be to accurately describe larger systems beyond
single anion-cation pairs. Recent work by Li et al.83 has
provided an accurate structure of two ion pairs (two cations
and two anions), providing a greater understanding of the
molecular structure and intermolecular interactions. The same
system will be modeled here, along with systems of three ion
pairs, to illustrate the effectiveness of the FMO method in
accurately describing complex molecular clusters, with the goal
of modeling much larger systems in the future.

Two ionic liquid systems, 1-H,4-H-1,2,4-triazolium dinitra-
mide and 1-amino, 4-H-1,2,4-triazolium dinitramide (Figure 8),
were studied using both ab initio Møller-Plesset second-order
perturbation theory (MP2) and the MP2 implementation of the
FMO method72,77 with one ion chosen as a FMO fragment or
monomer. Structures composed of two cations and two anions
(tetramers), shown in Figures 9 and 11, and larger clusters of
three cations and three anions (hexamers), shown in Figures
10 and 12, were optimized at the MP2/6-31+G(d) level of
theory. FMO2-MP2 and FMO3-MP2 single-point energy cal-
culations were then performed for comparison with the fully

Figure 7. Lowest-energy cluster of 32 water molecules obtained from
EFP Monte Carlo/simulated annealing simulations.

TABLE 6: Absolute Errors in the FMO2-MP2 and
FMO3-MP2 Total Energy of the 32 Water Clusters Selected
from EFP Monte Carlo/Simulated Annealing Simulationsa

absolute error (kcal/mol)

6-31++G(d,p) 6-311++G(3df,2p)

isomerb FMO2-MP2 FMO3-MP2 FMO2-MP2 FMO3-MP2

32_1 11.8 2.2 26.8 1.0
32_2 12.4 2.5 28.0 1.2
32_3 11.4 1.9 27.3 1.3
32ab 12.5 2.5 27.4 1.3
32ad 11.8 2.5 27.3 1.2
32h 12.3 2.5 27.3 1.3
32o 12.5 2.5 25.8 1.0
32z 12.4 2.3 24.6 1.2

a Isomer names are only used to distinguish isomers from one
another. b One water molecule chosen as a monomer.
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ab initio results. Mulliken charges on each cation and anion
were also compared to ensure that the pronounced charge
separation present in ionic liquids80-82 is captured using the
FMO method.

Comparing the energies from FMO2 and FMO3, it can be
seen immediately that the FMO method captures the total energy
very well, within 2 kcal/mol in the worst case (Table 8). For
the tetramers, both FMO2 and FMO3 are in good agreement;
the FMO2 errors are less than 1 kcal/mol relative to the fully
ab initio results. For the hexamers, the FMO2 errors are less
than 2 kcal/mol, illustrating that FMO3 is not required to achieve
the desired level of accuracy for these particular ionic liquid
systems. Whether this trend persists as system size grows beyond
three ion pairs, or for other ion pairs, must be tested further.

As shown in previous studies,80-82 ionic liquid ion pairs have
a definite separation of charge (approximately +1 on the cations

and -1 on the anions) at equilibrium geometries. This charge
separation is also observed for tetramers, as shown in Table 2,
and the charge separation between cations and anions is still
present up to hexamer structures. FMO2 captures the qualitative
charge separation quite well; however, the magnitude of charge
present on both cations and anions is slightly overestimated by
FMO2 for both tetramer structures (Table 9). However, as the
system size increases to three ion pairs, the difference between
FMO2, FMO3, and ab initio results becomes minimal. Future
work using larger basis sets will help determine if FMO2 is

TABLE 7: Relative FMO2-MP2 and FMO3-MP2 Energies of the 32 Water Clusters Selected from EFP Monte Carlo/Simulated
Annealing Simulationsa

relative energies (kcal/mol)

6-31++G(d,p) 6-311++G(3df,2p)

isomerb FMO2-MP2 FMO3-MP2 ab initio FMO2-MP2 FMO3-MP2 ab initio

32_1 0.0 0.0 0.0 0.0 0.0 0.0
32z 1.3 0.5 0.2 0.7 0.2 0.1
32_2 1.4 1.2 0.9 1.1 0.8 0.5
32ab 1.5 1.2 0.9 1.1 0.9 0.6
32h 1.4 1.2 0.9 1.4 1.0 0.7
32o 1.7 1.5 1.2 1.7 1.3 1.0
32ad 4.9 6.0 6.0 5.7 6.1 5.8
32_3 11.8 14.3 14.1 14.0 14.1 14.4

a Isomer names are only used to distinguish isomers from one another. b One water molecule chosen as a monomer.

Figure 8. Ion pairs of 1-amino,4-H-1,2,4-triazolium dinitramide (top)
and 1-H,4-H-1,2,4-triazolium dinitramide (bottom).

Figure 9. Lowest-energy structure of 1-amino,4-H-1,2,4-triazolium
dinitramide tetramer obtained from an ab initio MP2/6-31+G(d)
optimization.

Figure 10. Lowest-energy structure of 1-amino,4-H-1,2,4-triazolium
dinitramide hexamer obtained from an ab initio MP2/6-31+G(d)
optimization.

Figure 11. Lowest-energy structure of 1-H,4-H-1,2,4-triazolium dinit-
ramide tetramer obtained from an ab initio MP2/6-31+G(d) optimiza-
tion.
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accurate enough to describe larger ionic liquid clusters or if
FMO3 will be required.

Another consideration for larger molecular systems is the
computer time required. To illustrate the overall effectiveness
of the FMO method in both providing accurate results and
reducing computational requirements, timings were performed
for the ionic liquid systems described above. Due to the fact
that FMO2 is in good agreement with the ab initio results, only

timings for FMO2 will be shown. However, it is noted here
that because the tetramers and hexamers examined here are
small, the FMO3 timings for these systems do no exhibit any
time savings relative to the full MP2 calculations. The benefit
of using FMO3 is only seen with larger systems.73

Timings were performed on a Cray XT4 supercomputer using
AMD Opeteron64 processors running at 2.1 GHz, located at
the U.S. Army Engineer Research and Development Center
(ERDC) in Vicksburg, Mississippi. Single-point Møller-Plesset
second-order perturbation theory (MP2) energy calculations
were performed using 8, 16, and 32 processors with both FMO2
and MP2 using the 6-31+G(d) basis set. As shown in Table
10, FMO2 requires approximately half of the computer time of
a full MP2 calculation on the tetramers. With the increase in
available processors, the overall time requirements are cut in
half for both FMO2 and MP2, showing good scalability for both
methods. With an increase in system size from ionic liquid
tetramers to hexamers, the computer time required for a fully
ab initio calculation increases more than 6 fold, while the FMO2
requirement only doubles. Therefore, the FMO2 cost savings
relative to full MP2 is much greater than that observed for the
tetramers. Again, scalability for both methods is very good for
the hexamers, cutting the computational time in half when
doubling the number of available CPUs.

It is apparent that as the system size increases to larger ionic
liquid clusters or as the basis set size increases (or both), the
computational requirements for a fully ab initio calculation will
rapidly and increasingly exceed those for FMO2. It may be that
as the system size increases, the importance of three-body
contributions to the interaction energy will also increase,
requiring the use of FMO3. Future work will determine the
importance of three-body terms in ionic liquid systems, as well
as the ability of the FMO method to describe larger molecular
clusters.

5. Summary and Conclusions

Obtaining chemical accuracy (1 kcal/mol) using model
chemistries has been a major focus of quantum chemistry
research for the last quarter of a century. The desire to study
larger systems in order to capture novel chemical phenomena
(e.g., solvent effects, surface science, enzyme and heterogeneous
catalysis, and polymerization phenomena), including the kinetics
and dynamics of such processes, often requires very accurate
predictions of potential energy surfaces for subsequent predic-
tions to be even qualitatively correct. The computational effort
of traditional methods such as Hartree-Fock (HF), density
functional theory (DFT), second-order perturbation theory

Figure 12. Lowest-energy structure of 1-H,4-H-1,2,4-triazolium dinit-
ramide hexamer obtained from an ab initio MP2/6-31+G(d) optimization.

TABLE 8: FMO2 Errors (kcal/mol) for Tetramer and
Hexamer Ionic Liquid Clusters

absolute error
(kcal/mol) 6-31+G(d)

tetramers FMO2-MP2 FMO3-MP2

1-H,4-H-1,2,4-triazolium
dinitramide

0.06 0.02

1-amino,4-H-1,2,4-triazolium
dinitramide

0.69 0.03

hexamers

1-H,4-H-1,2,4-triazolium
dinitramide

0.32 0.07

1-amino,4-H-1,2,4-triazolium
dinitramide

1.35 0.27

TABLE 9: Comparison of Mulliken Charges for All Ionic
Liquid Systems Investigated

Mulliken charges 6-31+G(d)

tetramers FMO2-MP2 FMO3-MP2 MP2

1-H,4-H-1,2,4-triazolium
dinitramide

cation 1 0.82 0.77 0.74

cation 2 0.82 0.77 0.74
anion 1 -0.82 -0.77 -0.74
anion 2 -0.82 -0.77 -0.74

1-amino,4-H-1,2,4-triazolium
dinitramide

cation 1 0.87 0.84 0.82

cation 2 0.82 0.82 0.82
anion 1 -0.89 -0.94 -0.93
anion 2 -0.80 -0.74 -0.71

hexamers

1-H,4-H-1,2,4-triazolium
dinitramide

cation 1 0.86 0.82 0.79

cation 2 0.88 0.85 0.80
cation 3 0.94 0.91 0.87
anion 1 -0.83 -0.79 -0.77
anion 2 -0.95 -0.92 -0.88
anion 3 -0.90 -0.86 -0.81

1-amino,4-H-1,2,4-triazolium
dinitramide

cation 1 0.84 0.84 0.88

cation 2 0.79 0.78 0.76
cation 3 0.90 0.89 0.89
anion 1 -0.81 -0.92 -0.95
anion 2 -0.83 -0.85 -0.83
anion 3 -0.88 -0.74 -0.75

TABLE 10: Timings for Ionic Liquid Clusters Performed
on a Cray XT4 with 2.1 GHz AMD Opteron64 Processorsa

timing (minutes)
6-31+G(d)

tetramer # CPUs FMO2-MP2 MP2

1-amino,4-H-1,2,4-triazolium
dinitramide

8 12.2 28.4

16 6.4 14.7
32 3.5 7.3

hexamer

1-amino,4-H-1,2,4-triazolium
dinitramide

8 24.0 172.1

16 12.5 83.9
32 6.8 42.8

a Each node contains a four-core CPU and 8 GB of RAM.
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(MP2), and coupled cluster theory with perturbative triples
(CCSD(T)) scale as O(n4), O(n4), O(n5), and O(n7), respectively,
where n represents the size of the system, for example, the size
of the basis set. In practice, this limits the sizes of systems that
can be studied with HF/DFT, MP2, and CCSD(T) to ap-
proximately a few hundred, 100, and 20 non-hydrogen atoms,
respectively. By developing highly parallel algorithms, the goal
of using sophisticated electronic structure methods to investigate
large molecular problems becomes more feasible, especially if
one has access to massively parallel computing hardware.
However, scalability beyond hundreds to a few thousand
processors is generally a serious bottleneck for correlated
electronic structure methods. Consequently, parallel computing
is not the sole solution to enabling accurate calculations on
extended molecular systems; other approaches are needed. If
one is interested in performing long-time simulations at reliable
levels of theory, the situation is only exacerbated.

Pioneering work by Warshel9a and others9 introduced hybrid
methods that employ both quantum mechanics (QM) and
molecular mechanics (MM), leading to the now ubiquitous QM/
MM approach. Importantly, the QM/MM approach is quite
general; therefore, it can be employed with any level of QM,
including the fragmentation methods that have been the primary
focus of the present work. Modern fragmentation methods have
their roots in ideas from Murrel (1955)46b and Christoffersen
(1971).46a More recently developed fragmentation methods, such
as the fragment molecular orbital (FMO) method and the
systematic fragmentation method (SFM), are now becoming
capable of achieving chemical accuracy for extended molecular
systems.

The effective fragment potential (EFP)12 method has been
developed to model nonbonded, intermolecular interactions.
There are two related implementations of the EFP method. The
original method, called EFP1, was developed specifically to
study aqueous solvent effects on chemical processes. The more
recently developed EFP2 method is completely general, in the
sense that an EFP2 contains no empirically fitted parameters.
The Coulomb and induction terms are common to EFP1 and
EFP2, and the remaining terms in EFP2 are derived from first
principles. Once an EFP2 has been built for a specific system
(accomplished by a straightforward GAMESS run), the evalu-
ation of EFP-EFP interactions requires a small fraction of the
computational cost compared to that of the fully QM calculation.
The EFP computational effort scales in the range of quadratic
to linear with an increasing number of fragments. EFP1/MP2
achieves an accuracy of ∼1 kcal/mol for the relative energies
of six-water clusters compared to CCSD(T)/aug-cc-pVTZ.47b For
benzene dimer binding energies, EFP2 achieves an accuracy of
∼1 kcal/mol relative to CCSD(T)/aug-cc-pVTZ results. The
EFP1 method has been interfaced with the QM methods HF,13

DFT,14 MCSCF,15 singly excited configuration interaction
(CIS),16 and time-dependent density functional theory (TD-
DFT)17 within the GAMESS suite; therefore, EFP1 is a fully
QM/MM method. The EFP2-QM integration is currently under
development.18 These new features will greatly expand the utility
of the method by enabling, for example, the exploration of
solvent effects for a wide variety of problems in organic and
inorganic chemistry.

The SFM fragments a molecule based on the number of single
bonds in each fragment while considering the environmental
effects of distant parts of the system via a many-body expansion
of the interactions not captured by the internal energies of the
fragments. This framework allows the SFM to be widely
applicable with a simple user interface, which has been

integrated into the GAMESS suite. The SFM has been used to
study small- and medium-sized organic molecules,35 as well as
crystals.37 In this paper, it was demonstrated that the SFM, when
using EFPs for the nonbonded interactions, has a mean averaged
error of 1.8 kcal/mol for several R-helical isomers at the HF/
6-31++G(d,p) level of theory. The SFM is formally indepen-
dent of the ab initio methods used in calculations of the
fragments, thereby facilitating highly accurate energies and
relative energies with nearly linear scaling as the size of the
system is increased. Therefore, the SFM can be used in concert
with any available electronic structure method, such as MP2
and CCSD(T), and applied to much larger molecular systems
that might otherwise not be accessible. The time requirements
for the EFP part of a SFM calculation, when EFPs are used for
the nonbonded interactions, are determined by the cost of an
initial HF single-point calculation that is employed to generate
the potential. Therefore, the EFP fraction of the overall computer
time requirements decreases rapidly as the level of ab initio
theory increases (e.g., from HF to MP2 to CCSD(T)).

The FMO method treats each fragment (monomer, dimer, etc.)
in a Coulomb bath that represents the remainder of the full
system. The energy of each monomer is iterated to self-
consistency within this Coulomb bath. The FMO method is very
flexible with regard to the definition of fragments (i.e.,
monomers), the assignments of distance cutoff parameters, and
the level of many-body effects (i.e., dimer, trimer, etc.) to be
included in the calculation. Combined with the avoidance of
capping procedures, this facilitates the study of a wide variety
of systems including clusters, zeolites, and proteins and the
ability to balance accuracy and computational efficiency. Within
GAMESS, the FMO method has been interfaced with the
polarizable continuum method and the EFP method for studies
of solvent effects on chemical processes. Each monomer in a
molecular system of interest can be treated by most traditional
electronic structure methods. In the present work, the FMO
method has been shown to achieve accuracy within 1 kcal/mol
for both ionic liquid systems and water clusters.

The EFP method provides a systematically improvable
description of nonbonded interactions, while the FMO method
and the SFM facilitate the description of large molecular systems
with high levels of accuracy. The interface of the two
fragmentation methods for internal and near-field ab initio
calculations with the EFP method for nonbonded moderate and
far-field interactions and for solvent effects provides a powerful
and computationally effective combination. Additionally, the
ability of these methods to take advantage of the standard
theoretical electronic structure framework allows their capabili-
ties to move forward with new advances in electron correlation,
wave function description, and basis set development for large
molecular systems. The primary limitation of both the SFM and
FMO methods is that they are primarily applicable to “localized”
systems. That is, these methods rely on the ability to decompose
a large species into smaller fragments that are reasonably self-
contained. Therefore, the methods would not work well for
highly delocalized systems, such as a conducting metal, graphite,
or a linear polyene.

The SFM and FMO methods have not yet been broadly
applied to the study of chemical reactions. Since analytic
gradients are available for both methods, the exploration of
potential energy surfaces for chemical reaction of complex
systems using these methods is a logical next step.

An important advantage of the FMO and SFM approaches
described here is their ability to take great advantage of
massively parallel computers. Because the energy of each
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fragment can be computed essentially independently, each
fragment calculation can be determined on a separate compute
node. Further, because most of the algorithms used in GAMESS
for electronic structure functionalities are themselves highly
scalable, the fragment-based calculations can take advantage
of multilevel parallelism. This capability, which is enhanced
by middleware developments like the generalized distributed
data interface (GDDI), bodes well for the implementation of
algorithms for “petascale” computers that are expected to come
on line within the next 2-3 years. Simultaneous advancements
in new approaches like the fragmentation methods discussed
here, novel parallel algorithms, ab initio theory, and novel
approaches in hardware development are all required if one is
to successfully address the grand challenge problems in the
chemical sciences, biological sciences, and materials science
and engineering.
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